

FLINDERS BUSINESS SCHOOL

REAL EXCHANGE RATE MISALIGNMENT, FINANCIAL INTEGRATION AND ECONOMIC GROWTH: THE CASE OF EAST ASIAN ECONOMIES

Presented by: Pham Van Dai

BACKGROUND (cont)

An emerging deabte:

- Washington consensus/neo-classical: Misalignment, both overvaluation & undervaluation, is harmful
- Rodrik (2008)/ neo-mercantilism: Overvaluation is harmful but undervaluation could support growth

BACKGROUND

- The experience from the recent development in emerging countries, especially China, indicates that a competitive exchange rate might be favourable for economic growth.
- However, competitive EXR => hyperinflation in Latin American countries
- •Both researchers and practitioners are concerned about the impact of RER misalignment on economic performance.
- ✓ Researcher: Does the misalignment-growth link exist and how can it exist?
- ✓ Practitioner: What is the optimal exchange rate policy for economic growth?

Literature review

- Theoretical:
 - Theoretical research is just at the beginning state (P. Montiel & Servén, 2008)
 - Rodrik (2008)'s model: undervaluation counterbalances the negative effects of government intervention/market failures on the tradable sector. But the model assumption is criticized (Henry & Woodford, 2008). Why government intervention/market failures are more severe in tradable sector than nontradables?
 - It is not clear that through which channels depreciated exchange rate can influence economic growth (Nouira & Sekkat, 2012).

Literature review: Empirical

- An increasing body of empirical research
- A positive undervaluation & growth relationship is reported in a number of empirical studies. But their validity is questioned:
 - ✓ Misinterpreted nonlinearity: overvaluation is harmful rather than
 undervaluation & growth relationship (Nouira & Sekkat, 2012)
 - ✓ Heterogeneity in estimation using panel data (Schröder, M, 2013)
 - ✓ Recent regressions found that there is not a significant relationship (Nouira & Sekkat, 2012, Schröder, M, 2013)
- ⇒ a competitive exchange rate is not a general rule for economic growth (Nouira & Sekkat, 2012).
- ⇒ "the real exchange rate is best thought of as a facilitating condition" (Eichengreen, 2008)
- ⇒It may only work under certain circumstances?

The gap in literature

- => Financial integration plays a role
 - ✓ Countries without financial integration cannot finance their imported capital good => not obtaining the optimal position: Balance of payments constraint
 - ✓ Undervaluation supports capital accumulation => obtaining the optimal position => promote growth
- ❖ **Hypothesis:** The positive impact of undervaluation is stronger in countries which less integrated
- => Why empirical evidence on large sample of developing countries are not likely to be significant and consistent.

The gap in literature

- Theoretical:
 - ✓ The channels through which undervaluation can promote growth?
- Empirical:
 - ✓ Large samples of developing&industrial countries were used, but a more homogeneous country group might improve the robustness of empirical analysis.
 - ✓ GMM is best for large N & small T sample but there is issue of valid instrument. Other regression technique for smaller panel could give more robust result
 - ✓ What are the circumstances under which undervaluation could promote growth?
 - √ New regression techniques to address the nonlinearity issues

Empirical analysis

■ Examine the interaction between misalignment and financial integration:

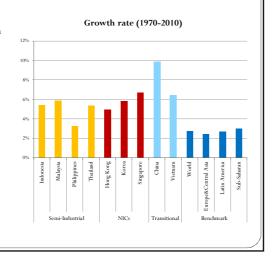
$$\begin{split} \textit{GDPG}_{it} &= \beta_0 + \sum\nolimits_{p=1}^{m} \beta_1 \textit{GDPG}_{i,t-p} + \sum\nolimits_{p=1}^{n} \beta_2 \textit{MIS}_{i,t-p} + \sum\nolimits_{p=1}^{n} \beta_3 \textit{MIS}_{i,t-p} * F_{i,t-p} \\ &+ \sum\nolimits_{p=1}^{n} \beta_3 F_{i,t-1} + \sum\nolimits_{p=1}^{l} \theta C_{i,t-p} + u_{it} \end{split}$$

Where *GDPG* is the per capita income growth rate; *F* is a variable proxying for a country's degree of financial integration; *C* is a vector of control variables including the share of government spending in GDP (*GOV*), inflation (*INF*) and the ratio of gross fixed capital formation in GDP

(FCF). RER misalignment index (MIS)

RER misalignment estimation

$$RER_{it} = \frac{NER_{it}}{NER_i^*} \frac{PI_i^*}{PI_{it}} \frac{PI_{US,t}}{PI_{US}^*}$$


$$\begin{split} RER_{it} &= \alpha_0 + \alpha_1 TOT_{it} + \alpha_2 GDPR_{it} + \alpha_3 OPN_{it} + \alpha_4 FDI_{it} + \alpha_5 FIC_{it} + u_{it} \\ MIS_{it} &= \frac{RER_{it}}{\widehat{RER}_{it}} \end{split}$$

Where *TOT* is the terms of trade; *GDPR* is the ratio of a country's per capita income to US per capita income; *OPN*, *FDI* and *FIC* is the degree of openness, foreign direct investment inflows and foreign income to GDP.

Shared features

- Geographic: East Asian region exclude Japan, and lowincome country
- Strong intra-region intraregional trade and investment relationship
- High performing economies: East Asian miracle
- The role of manufacturing sector
- => Exchange rate might have important influence

Sample

9 East Asian economies:

- Semi-industrial: Indonesia, Malaysia, Philippines, Thailand (1970-2010)
- NICs: Hong Kong, Korea, Singapore (1970-2010)
- Transition: China (1980-2010),
 Vietnam (1990-2010)

Regression strategy

- Financial integration indicator:
 - ✓ Ahmed, A. D. (2011): Five common indicators
 - ✓ Only FDI data available for the sampled countries
 - ✓ A subjective categorical variable is used: NICs (higher integrated), four semi-industrial (high integrated), transitional (low integrated)
- ✓ Capital openess index (Chinn & Ito, 2008): a higher value of the index indicates a higher degree of financial integration
- $\bullet \ \ Regression \ method:$
- ✓ Panel corrected standard errors (PCSEs): Large T, small N

Panel unit root tests

Criterion to chose number of lags	AIC	BIC	HQIC			
	??? ₇₇₋					
3014230142	-10.7776 ***	-11.1024***	-11.6275***			
???##?	-1.4521 *	-1.2014	-1.4521*			
??? ??!?	1.2227	-1.6472**	-1.2227			
2022/2021	-2.6189***	-4.0739***	-2.8897***			
34442	-2.5882***	-3.1372***	-3.4332***			
777 77.72	-7.4662***	-6.1296***	-5.4811***			
	-2.4049***	-2.6205***	-2.6205***			
PARRARA	_1 5585*					

Note:

a: 221700 ndicator was calculated by using CPI

0.6681

0.6739

0.6762

0.6925

0.6879

0.6736

- b: mandicator was calculated by using GDP deflator
- c: There was an insufficient number of time periods to compute as lagged terms are introduced in the Augmented Dickey-Fuller regressions. For this reason, zero lag length was used.

 ***, ** and * indicate significance at 1%, 5% and 10%, respectively.

Panel regression of economic growth, using DFL as a price index 0.4682*** $GDPG_{t-1}$ 0.4632*** 0.4145*** 0.3762*** (0.0789) 0.0263** (0.0778)(0.0756)(0.0747)(0.0744)(0.0756)0.0403*** 0.0534*** 0.0521*** MIS_{t-1} 0.0102 0.0095 FDI_{t-1} -0.0392 0.1816 -0.0391 -0.0629** -0.0387 (0.0314)(0.1129)(0.0327)(0.0315)(0.0306)(0.0305) $(MIS * FDI)_{t-1}$ -0.2160° FOP_{t-1} 0.0215*** (0.0081) $(MIS*FOP)_{t-1}$ -0.0221*** -0.0989** -0.1064*** (0.0415)(0.0397) $(MIS * L)_{t-1}$ 0.1151*** 0.0167 0.0400** (0.0244) (0.0239) $(MIS*H)_{t-1}$ -0.0086 -0.0506* (0.0253)(0.0262) GOV_{t-1} 0.1891*** 0.1904*** 0.1384* 0.0756 0.0875 0.1928*** (0.0703)(0.0668)(0.0745)(0.0693)(0.0691)(0.0689)-0.0932*** INF_{t-1} -0.0660* -0.0882*** -0.0850** -0.0854*** (0.0353)(0.0357) INF_{t-2} 0.0534** 0.0535** 0.0479* 0.0499* (0.0253) (0.0260)(0.0268)(0.0266)(0.0249)(0.0247) FCF_{t-1} 0.0915** 0.1061*** 0.0887** 0.1164*** 0.0790** 0.0611 (0.0394)(0.0392)(0.0400) (0.0381)(0.0383) (0.0399)-0.0481*** -0.0613*** -0.0700*** -0.0069 -0.0117 -0.0740** (0.0166)(0.0169)(0.0161)(0.0205) (0.0198)(0.0184)

$GDPG_{t-1}$	0.4762*** (0.0789)	0.4746*** (0.0768)	0.4007*** (0.0756)	0.3466*** (0.0756)	0.3541*** (0.0745)	0.4724*** (0.0764)
MIS_{t-1}	0.0209*	0.0386***	0.0691***	-0.0069	0.0070	0.0385***
FDI_{t-1}	(0.0120) -0.0347	(0.0139) 0.2404*	(0.0153) -0.0441	(0.0176) -0.0744**	(0.0126) -0.0409	(0.0147) -0.0339
$(MIS*FDI)_{t-1}$	(0.0317)	(0.1299) -0.2832** (0.1427)	(0.0316)	(0.0317)	(0.0308)	(0.0302)
FOP_{t-1}		(0.0327*** (0.0089)			
$(\mathit{MIS}*FOP)_{t-1}$			-0.0324*** (0.0088)			
L			`/	-0.1152** (0.0483)	-0.1084** (0.0424)	
$(MIS * L)_{t-1}$				0.1332***	0.1212***	
Н				(0.0462) -0.0064	(0.0404)	0.0370*
$(MIS*H)_{t-1}$				(0.0226) 0.0163 (0.0242)		(0.0216) -0.0365 (0.0232)
GOV_{t-1}	0.1840*** (0.0694)	0.1904*** (0.0668)	0.1518** (0.0701)	0.0739 (0.0665)	0.0939 (0.0657)	0.1735** (0.0687)
INF_{t-1}	-0.0574 (0.0352)	-0.0696** (0.0349)	-0.0987*** (0.0344)	-0.0824** (0.0346)	-0.0940*** (0.0330)	-0.0745** (0.0361)
INF_{t-2}	0.0558**	0.0559**	0.0566**	0.0223	0.0269	0.0535** (0.0264)
FCF_{t-1}	0.0758* (0.0399)	0.0806**	0.1205*** (0.0407)	0.0464 (0.0391)	0.0694* (0.0380)	0.0824** (0.0408)
Intercept	-0.0395** (0.0156)	-0.0574*** (0.0169)	-0.0896*** (0.0181)	0.0121 (0.0223)	-0.0085 (0.0180)	-0.0565*** (0.0173)
No. of Obs	240	240	240	240	240	240

Findings

- Regressions (1a) and (1b) illustrate the influence of RER misalignment on economic growth.
- Growth enhancing effect of a competitive real exchange rate is more robust in less financially integrated countries
- Benefit of a policy targeting an undervalued RER could be substantial when it helps a less financially integrated economy overcome the obstacles caused by a balance of payments constraint.
- In contrast, in a highly financially integrated economy not facing a serious balance of payments constraint, such a policy has minor benefit that might not outweigh its side effects.

